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INTRODUCTION 

Linear systems are those that satisfy both homogeneity and additivity. 

(i) Homogeneity: Let x be the input to a linear system and y the corresponding output, as shown 

in Fig. 1.1. If the input is doubled (2x), then the output is also doubled (2y). In general, a system 

is said to exhibit homogeneity if, for the input nx to the system, the corresponding output      

is ny (where n is an integer). Thus, a linear system enables us to predict the output. 

 

FIGURE 1.1 A linear system 

(ii) Additivity: For two input signals x1 and x2 applied to a linear system, let y1 and y2 be the 

corresponding output signals. Further, if (x1 + x2) is the input to the linear system and (y1 + y2) 

the corresponding output, it means that the measured response will just be the sum of its 

responses to each of the inputs presented separately. This property is called additivity. 

Homogeneity and additivity, taken together, comprise the principle of superposition. 

(iii) Shift invariance: Let an input x be applied to a linear system at time t1. If the same input 

is applied at a different time instant t2, the two outputs should be the same except for the 

corresponding shift in time. A linear system that exhibits this property is called a shift-invariant 

linear system. All linear systems are not necessarily shift invariant. 

A circuit employing linear circuit components, namely, R, L and C can be termed a linear 

circuit. When a sinusoidal signal is applied to either RC or RL circuits, the shape of the signal 

is preserved at the output, with a change in only the amplitude and the phase. However, when 

a non-sinusoidal signal is transmitted through a linear network, the form of the output signal is 

altered. The process by which the shape of a non-sinusoidal signal passed through a linear 

network  is  altered  is  called  linear  wave  shaping.  We  study  the  response  of  high-    

pass RC and RL circuits to different types of inputs in the following sections. 

1. HIGH-PASS CIRCUITS 

Figures 1.2(a) and 1.2(b) represent high-pass RC and RL circuits, respectively. 
 

FIGURE 1.2(a) A high-pass RC circuit 
 

Consider the high-pass RC circuit shown in Fig. 1.2(a). The capacitor offers a low reactance 

(XC = 1/jωC) as the frequency increases; hence, the output is large. Consequently, high- 

frequency signals are passed to the output with negligible attenuation whereas, at low 

frequencies, due to the large reactance offered by the condenser, the output signal is small. 

Similarly, in the circuit shown in Fig. 1.2(b), the inductive reactance XL (= jωL) increases with 

frequency,  leading  to  a  large  output.  At  low  frequencies,  the  reactance  of   the   

inductor XL becomes small; hence, the output  is  small.  Therefore,  the  circuits  in  Fig  

1.2(a) and (b) are called high-pass circuits. In the case of L, XL is directly proportional to 

frequency; and in the case of C, XC is inversely proportional to frequency. C and L may 

therefore be called  inverse  circuit  elements.  Thus,  in  the  high-pass  circuit  of  Fig.  
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1.2(a), C appears as a series element; and in the high-pass circuit of Fig. 1.2(b), L appears as a 

shunt element. The time constant τ is given by: τ = RC = L/R. 

 

FIGURE 1.2(b) A high-pass RL circuit 

What will be the response if different types of inputs such as sinusoidal, step, pulse, square 

wave, exponential and ramp are applied to a high-pass circuit? 

Response of the High-pass RC Circuit to Sinusoidal Input 

Let us consider the response of a high-pass RC circuit, shown in Fig. 1.2(a) when a sinusoidal 

signal is applied as the input. Here: 

 

Let 
 

where, τ = RC, the time constant of the circuit. 

 
 

 

The signal undergoes a phase change and the phase angle, θ, is given by: 

θ = tan−1 (ω1/ω) = tan−1 (T/τ) 

At ω = ω1: 

 

Hence, f1 is the lower half-power frequency of the high-pass circuit. The expression for the 

output for the circuits in Figs. 1.2(a) and (b) is the same as given by Eq. (3). Figure 1.3(a) shows 

a typical frequency–response curve for a sinusoidal input to a high-pass circuit. The frequency 

response and the phase shift of the  circuit  shown  in  Fig.  1.2(a)  are  plotted  in  Figs.  

1.3(b) and 1.3(c), respectively, for different values of τ. 

From Fig. 1.3(b), it is seen that as the half-power frequency decreases for larger values of τ, 

the gain curve shows a sharper rise. From Fig. 1.3(c), it is seen that if T/τ > 20, the phase angle 

approaches approximately 90°. 

Response of the High-pass RC Circuit to Step Input 

A step voltage, shown in Fig.1.4(a), is represented mathematically as: 
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FIGURE 1.3(a) A typical frequency response curve for a sinusoidal input 

A step is a sudden change in voltage, say at an instant t = 0, from say zero to V, in which 

case, it is called a positive step. The voltage change could also be from zero to -V, in which 

case it is called a negative step. This is an important signal in pulse and digital circuits. For 

instance, consider an n–p–n transistor in the CE mode. Assume that VBE = 0. Then, the 

voltageat the collector is approximately VCC. Now  if  a  battery with  voltage  Vσ  is  

connected  so that VBE = Vσ, as the device is switched ON, the voltage at the collector which 

earlier was VCC, now falls to VCE(sat). This means a negative step is generated at the collector. 

However, if the transistor is initially turned ON so that the voltage at its collector is VCE(sat) 

and VBE is made zero, then as the transistor is switched OFF, the voltage at its collector rises 

to VCC. A positive step is now generated at its collector. 

For a step input, let the output voltage be of the form: 
 

where, τ = RC, the time constant of the circuit. 
 

FIGURE 1.3(b) The frequency–response curve for different values of τ 

 
 

 
 

 
 

 
 



 

 

 

 

 

FIGURE 1.3(c) Phase versus frequency curve for different values of τ 

B1 is the steady-state value of the output voltage because as t → ∞, vo → B1. 

Let the final value of this output voltage be called vf. Then: 

 

B2 is determined by the initial output voltage. At t = 0, when the step voltage is applied, the 

change at the output is the same as the change at the input, because a capacitor is connected 

between the input and the output. Hence, 

 

Therefore, 

B2  = vi − B1 

Using Eq. (6): 
 

Substituting the values of B1 and B2 from Eqs. (6) and (8) respectively in Eq. (5), the general 

solution is given by the relation: 

 

For a high-pass RC circuit, let us calculate vi and vf. As the capacitor blocks the dc component 

of the input, vf = 0. Since the capacitor does not allow sudden voltage changes, a change in the 

voltage of the input signal is necessarily accompanied by a corresponding change in the voltage 

of the output signal. Hence, at t = 0+ when the input abruptly rises to V, the output also changes 

by V. 

Therefore, vi = V. 

Substituting the values of vf and vi in Eq. (9): 
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initial value is called the fall time. It indicates how fast the output reaches its steady-state value. 

v0(t)/V for x varying from 0 to 5 is shown in Table 1.1. The response of the circuit is plotted  in 

Fig. 1.4(b). 

At t = 0, when a step voltage V is applied as input to the high-pass circuit, as the capacitor 

will not allow any sudden changes in voltage, it behaves as a short circuit. Hence, the input 

voltage V appears at the output. As the input remains constant, the charge on the capacitor 

discharges exponentially with the time constant τ. After approximately 5τ, when τ is small, the 

output reaches the steady-state value. As τ becomes large, it takes a longer time for the charge 

on the capacitor to decay; hence, the output takes longer to reach the steady-state value. In 

general, the response of the circuit to different types of inputs is obtained by formulating the 

differential equation and solving for the output. 

For the circuit in Fig. 1.2(a): 
 

But vo  = iR 

 
 

For a step input, put vi = V and RC = τ. Taking Laplace transforms: 
 

 
 

Taking Laplace inverse: 
 

Fall time (tf): When a step voltage V is applied to a high-pass circuit, the output suddenly 

changes as the input and then the capacitor charges to V. Once the capacitor C is fully charged, 

it behaves as an open circuit for the dc input signal. Hence, in the steady-state, the output should 

be zero. However, the output does not reach this steady-state instantaneously; there is some 

time delay before the voltage on the capacitor decays and reaches the steady-state value. The 

time taken for the output voltage to fall from 90 per cent of its initial value to 10 per cent of its  

 

 

The output voltage at any instant, in the high-pass circuit is given by Eq. (17). At t = t1,  vo(t1) 

= 90% of V = 0.9 V. Therefore, 
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0.9 = e−t
1

/τ       et1/τ = 1/0.9 = 1.11     t1/τ = ln(1.11) 

t1  = τln (1.11) = 0.1τ 

At t = t2, vo(t) = 10% of V = 0.1 V. Hence, 

 
 

0.1 = e−t
2
/τ et2/τ = 1/0.1 = 10 t2  = τ ln (10) = 2.3τ 

The fall time is calculated as: 
 
 

The lower half-power frequency of the high-pass circuit is: 
 

 

Hence, the fall time is inversely proportional to f1, the lower half-power frequency. As f1, is 

inversely proportional to τ, the shape of the signal at the output changes with τ. 

 
Response of the High-pass RC Circuit to Pulse Input 

A positive pulse is mathematically represented as the combination of a positive step followed 

by a delayed negative step i.e., vi = Vu(t) − Vu(t − tp) where, tp is the duration of the pulse as 

shown in Fig. 1.6. 

To understand the response of a high-pass circuit to this pulse input, let us trace the sequence 

of events following the application of the input signal. 

At t = 0, vi abruptly rises to V. As a capacitor is connected between the input and output, the 

output also changes abruptly by the same amount. As the input remains constant, the output 

decays exponentially to V1 at t = tp. Therefore, 
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FIGURE 1.6 Pulse input and output of a high-pass circuit 
 

At t = tp, the input abruptly falls by V,  vo  also  falls  by  the  same  amount.  In  other 

words, vo = V1 − V. Since V1 is less than V; vo is negative and its value is V2 and this decays to 

zero exponentially. For t > tp, 

 

Substituting Eq. (22) in Eq. (23): 
 

The response of high-pass circuits with different values of τ to pulse input is plotted in Fig. 

1.7. As is evident from the preceding discussion, when a pulse is passed through a high-pass 

circuit, it gets distorted. Only when the time constant τ is very large, the shape of the pulse at 

the output is preserved, as can be seen from Fig. 1.7(b). However, as shown in Fig. 1.7(c), 

when the time constant τ is neither too small nor too large, there is a tilt (also called a sag) at 

the top of the pulse and an under-shoot at the end of the pulse. If τ << tp, as in Fig. 1.7(d), the 

output comprises a positive spike at the beginning of the pulse and a negative spike at the end 

of the pulse. In other words, a high-pass circuit converts a pulse into spikes by employing a 

small time constant; this process is called peaking. 

If the distortion is to be negligible, τ has to be significantly larger than the duration of the 

pulse. In general, there is an undershoot at the end of the pulse. The larger the tilt (for small τ), 

the larger the undershoot and the smaller the time taken for this undershoot to decay to zero. 

The area above the reference level (A1) is the same as the area below the reference level (A2). 

Let us verify this using Fig. 1.8. 

Area A1: For 0 < t < tp: 

vo  = Ve−t
/
τ 

 

 
 

Similarly, 
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From Eqs. (25) and (26) it is evident that 
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FIGURE 1.7 The response of a high-pass circuit to a pulse input 
 

FIGURE 1.8 The calculation of A1 and A2 

EXAMPLE 

Example 1: A pulse of amplitude 10 V and duration 10 μs is applied to a high-pass RC circuit. 

Sketch the output waveform indicating the voltage levels for (i) RC = tp, (ii) RC = 0.5tp and 

(iii) RC = 2tp. 

Solution: 

1. When RC = tp = τ 

At t = tp 

 
V1 = 10 e−(10×10−6)/(10×10−6) = 10−1 = 3.678 V 

vo1  = 10 e−t/(10×10−6) for t < tp 

vo(t > tp) = (V1 − 10)e−(t−10 × 10−6)/(10 × 10−6) = −6.322 e−(t−10 × 10−6)/(10 × 10−6) 

2. When RC = τ = 0.5tp 

At t = tp 

 
V1 = 10 e−(10 × 10−6)/(0.5 × 10 × 10−6) = 10e−2 = 1.35 V 

vo1 = 10 e−t/(0.5 × 10 × 10−6) for t < tp 

vo(t > tp) = −8.65 e−(t−10 × 10−6)/(0.5 × 10 × 10−6) 

3. When RC = τ = 2tp 

At t = tp 

 
V1 = 10 e(−10 × 10−6)/(2 × 10 × 10−6) = 10e−0.5 = 6.05 V 

vo1 = 10 e−t/(2 × 10 × 10−6) for t < tp 

vo(t > tp) = −3.935 e−(t−10 × 10−6)/(2 × 10 × 10−6) 
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even if the signal at the input is referenced to an arbitrary dc level, the output is always 

 

Based on these results, the output waveforms are sketched as in Fig. 

1.9(a), (b) and (c) corresponding to cases (i), (ii) and (iii), respectively. 
 

FIGURE 1.9(b) The response of a high-pass circuit for different values of τ 

From Example 2.2, it is seen that when τ is large, the amplitude distortion in the output is 

minimal, i.e.,  the  shape  of  the  signal  is  almost  preserved  in  the  output.  As  the  value  

of τ decreases, the charge on the capacitor decreases by a larger amount during the period the 

input remains constant. Consequently, the output is distorted. If τ decreases still further, it can 

be seen that the output contains positive and negative spikes. The shape of the signal in the 

output is essentially decided by the time constant of the circuit. 

 
Response of the High-pass RC Circuit to Square-wave Input 

A waveform that has a constant amplitude, say, V′ for a time T1 and has another constant 

amplitude, V ″ for a time T2, and which is repetitive with a time T = (T1 + T2), is called a square 

wave. In a symmetric square wave, T1 = T2 = T/2. Figure 1.10 shows typical input–output 

waveforms of the high-pass circuit when a square wave is applied as the input signal. 

As the capacitor blocks the DC, the DC component in the output is zero. Thus, as expected, 
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referenced to the zero level. It can be proved that whatever the dc component associated with 

a periodic input waveform, the dc level of the steady-state output signal for the high-pass circuit 

is always zero as shown in Fig. 1.10. To verify this statement, we write the KVL equation for 

the high-pass circuit: 

 

where, q is the charge on the capacitor. Differentiating with respect to t: 
 

But  

Substituting this condition in Eq. (29): 
 

Since vo  = iR, i = vo/R and RC = τ. Therefore, 
 

Multiplying by dt and integrating over the time period T we get: 
 

 

FIGURE 1.10 A typical steady-state output of a high-pass circuit with a square wave as input 

From Eqs. (30), (31), (32) and (33): 
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Under steady-state conditions, the output and the input waveforms are repetitive with a time 

period T. Therefore, vi(T) = vo(T) and vi(0) = vo(0). Hence, from Eq. (34): 

 

As the area under the output waveform over one cycle represents the DC component in the 

output, from Eq. (35) it is evident that the DC component in the steady-state is always zero. 

Now let us consider the response of the high-pass RC circuit for a square-wave input for 

different values of the time constant τ, as shown in Fig. 1.11. 

 

FIGURE 1.11 The response of a high-pass circuit for a square-wave input 
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As is evident from the waveform in Fig. 1.11(b), there is no appreciable distortion in the 

output if τ is large. The output is almost the same as the input except for the fact that there is 

no DC component in the output. As τ decreases, as in Fig. 1.11(c), there is a tilt in the positive 

duration (amplitude decreases from V1 to V1
′ during the period 0 to T1) and there is also a tilt in 

the negative duration (amplitude increases from V2 to V2
′ during the period T1 to T2). A further 

decrease in the value of τ [see Fig. 1.11(d)] gives rise to positive and negative spikes. There is 

absolutely no resemblance between the signals at the input and the output. However, this 

condition is imposed on high-pass circuits to derive spikes. In case a pulse is required to trigger 

another circuit, we see that the pulses obtained either at the rising edge (positive spike) or at 

the trailing edge (negative spike) may be used to edge trigger a flip-flop, as discussed in later 

chapters in the book. Let us consider the typical response of the high-pass circuit for a square- 

wave input shown in Fig. 1.12. 

 

FIGURE 1.12 The typical response of a high-pass RC circuit for a square-wave input 

From Fig. 1.12 and using Eq. (17) we have: 

 

For a symmetric square wave T1 = T2 = T/2. And, because of symmetry: 
 

From Eq. (36): 
 

But 
 

Therefore, 
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V1e
−T /τ −T  /τ 

 

 

 

From Eq. (37): 
 

 

V1 = −V2 

Substituting in Eq. (38): 
 
 

1    + V1 = V V1(1 + e   1   ) = V 

Thus, 
 

For a symmetric square wave, as T1 = T2 = T/2, Eq. (2.39) is written as: 
 

But 
 

There is a tilt in the output waveform. The percentage tilt, P, is defined as: 
 

 

If T/2τ << 1, 
 

Therefore, 
 

Thus, for a symmetrical square wave: 
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Equation (45) tells us that the smaller the value of τ when compared to the half-period of the 

square wave (T/2), the larger is the value of P. In  other words, distortion is large with     

small τ and is small with large τ. The lower half-power frequency, f1  = 1/2πτ. 

Therefore, 
 

Putting in Eq. (45) 
 

 

P = πf1T × 100% 

Therefore, 
 

Let us calculate and plot the response by taking specific examples. 

EXAMPLE 

Example 3: A 10 Hz square wave whose peak-to-peak amplitude is 2 V is fed to an amplifier. 

Calculate and plot the output waveform if the lower 3-dB frequency is 0.3 Hz. 

Solution: Let C be the condenser through which the signal is connected to the amplifier, having 

an input resistance R, as shown in Fig. 1.13(a). This is essentially the high-pass circuit in Fig. 

1.1(a). 

The lower 3-dB frequency f1 = 0.3 Hz 

Input frequency is f = 10 Hz 

 

FIGURE 1.13(a) The coupling network and (b) The response of the circuit 
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Therefore, 
 

 

The response of the circuit is shown in Fig. 1.13(b). 

EXAMPLE 

Example 4: A 20-Hz symmetrical square wave, shown in Fig. 1.14(a), with peak-to-peak 

amplitude of 2 V is impressed on a high-pass circuit shown in Fig. 1.1(a) whose lower 3-dB 

frequency is 10 Hz. Calculate and sketch the output waveform. What is the peak-to-peak output 

amplitude of the above waveform? 

 

FIGURE 1.14(a) Input to the high-pass circuit 

Solution: The lower 3-dB frequency: 
 

Input signal frequency f = 20 Hz 

Time period of the input   

Therefore, τ is small compared to T/2; so the capacitor charges and discharges appreciably 

in each half-cycle. Since the input is a symmetrical square wave, V1  = −V2, i.e., |V1| = 

|V2|,  i.e., . The peak-to-peak input = 2 V. Hence, 
 

21 
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Peak-to-peak value of output = V1 − V2 = 3.312 V. 

 
 

 = V1e
(−T/2)/τ = 1.656 e−(0.025/0.0159) = 0.344 V 

 

The output is plotted in Fig. 1.14(b). 
 

FIGURE 1.14(b) Output of the high-pass circuit for the given 

input  

FIGURE 1.15 The output of the high-pass circuit for the specified input 

 
 

Response of the High-pass RC Circuit to Exponential Input 

When a pulse is applied as input to an amplifier, it may while appearing at the actual input 

terminals of the amplifier, have a finite rise time. The result is that the input to the amplifier is 
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no longer a pulse with sharp rising edge, but an exponential. We would now like to know the 

response of the high-pass circuit to this exponential input. If the input to the high-pass circuit 

in Fig.1.2(a) is an exponential of the form: 

 

where, τ1 is the time constant of the circuit that has generated the exponential signal as shown 

in Fig. 1.16(a). 

From Eq. (30), we know: 
 

As vi = V(1 − e−t/τ1), 
 

Substituting Eq. (2.48) in Eq. (2.30): 
 

 

FIGURE 1.16(a) Exponential input 

Taking Laplace transforms: 

 

where, τ is the time constant of the high-pass circuit. 
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Therefore, 
 

Case 1: τ = τ1 

Applying partial fractions, Eq. (50) can be written as: 
 

Therefore, 
 

Put s = −1/τ1  in Eq. (52). 
 

Now put s = −1/τ in Eq. (52). Then: 
 

Therefore, 
 

Substituting the values of A and B in Eq. (51): 
 

Taking inverse Laplace transform: 
 

This is the expression for the output voltage where τ ≠ τ1. 

Let t/τ1 = x and τ/τ1 = n. For n ≠ 1, i.e., τ ≠ τ1, we have from Eq. (54): 
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Therefore, 
 

If τ >> τ1, the second term in the Eq. (2.55) is small when compared to the first. Thus, 
 

Case 2: τ = τ1, that is, n = 1. 
 

Taking Laplace inverse: 
 

As t/τ = x = t/τ1 and τ/τ1 = n = 1: 
 

The response of the circuit is plotted for different values of n in Fig. 1.16(b). 

From the response in Fig.1.16(b), it is seen that near the origin the output follows the input. 

Also, the smaller the value of n (= τ/τ1 is small), the smaller is the output peak and the shorter 

is the duration of the pulse. As n increases, the peak becomes larger and the duration of the 

pulse becomes longer. Hence, the choice of n is based on the amplitude and duration of the 

pulse required for a specific application. The maximum output occurs when (dvo/dt) = 0. 

From Eq. (55): 
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FIGURE 1.16(b) The response of a high-pass circuit to an exponential input 
 

Since x = t/τ, from Eq. (59), the time taken to rise to the peak tp  is given by: 
 

From Eq. (59): 
 

To obtain the maximum value of the output, substitute this value of −x from Eq. (60) in the 

expression for vo(t) in Eq. (55). 
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From the waveforms in Fig. 1.16(b) and the subsequent mathematical relations derived, it is seen that, if 

an exponential signal is applied as an input to a high-pass circuit, the output is a pulse whose duration 

depends on n(= τ/τ1), where τ1 is the time constant of the previous circuit that has generated the exponential 

signal and τ is the time constant of the high-pass circuit under consideration. The smaller the value of n, the 

smaller the duration of this output pulse and also the smaller its amplitude. As n increases, the duration as 

well as the amplitude of this output pulse increases. Hence, depending on our requirement, we adjust the 

value of n. 

it for the given exponential input when τ = τ1 
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The input and the output waveforms are as shown in Fig. 1.17. 
 

FIGURE 1.17 The input to and the output of the high-pass circuit 

 
 

Response of the High-pass RC Circuit to Ramp Input 

Ramp is a waveform in which the voltage increases linearly with time, for t > 0, and is zero 

for t < 0. It is used to move the spot in a CRO linearly with time along the x-axis. This type of 

waveform is generated by sweep circuits which we shall study later. However, if a ramp is 

applied as an input to a high-pass circuit, there could be deviation from linearity in the ouput. 

We can calculate and plot the ouput for different values of τ to understand how it influences 

the output. Let the input to the high-pass circuit be vi = αt where, α is the slope, as shown in Fig. 

1.18(a). 

For the high-pass circuit, we have: 
 

 

FIGURE 1.18(a) Ramp input 
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Taking Laplace transforms: 
 

Multiplying throughout by s: 
 

Therefore, 
 

From which, A = ατ and B = −ατ 
 

Taking Laplace inverse: 
 

If t/τ << 1: 
 

Therefore, vo(t) = ατ   
 

The output falls away from the input, as shown in Fig. 1.18(b). From the waveforms in Fig. 

1.18(b), we see that for the output to be the same as the input, τ >> T (the duration of the ramp). 

As the value of τ decreases, not only the amplitude of the output decreases but also the signal 

now is an exponential. The output falls away from the input. So, the choice of τ is dictated by 

the specific application. Transition error defines deviation from linearity and is given by: 

 

At t = T, vi = αT and vo  = αT[1 − (T/2τ)]. Therefore, 
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Thus, 
 

The transmission error, et describes how faithfully the signal is transmitted to the output. As 

the input is a ramp and if the output falls away from the input, et specifies the deviation from 

linearity. Let us try to plot the output by considering an example. 

 

FIGURE 1.18(b) The response of a high-pass circuit to ramp input 

EXAMPLE 

Example 7: A ramp is applied to an RC differentiator, [see Fig.1.1(a)]. Draw to scale the output 

waveform for the following cases: (i) T = RC, (ii) T = 0.5RC, (iii) T = 10RC. 

Solution: 

From Eq. (64): 
 

The peak of the output will occur at t = T. 
 

1. When T = τ, (τ/T) = 1 and (T/τ) = 1 
 

2. When T = 0.5τ 
 

 

3. When T = 10τ 
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vo(peak) = V (0.1) = V(0.1)(1 − 0.000045) = 0.1 V 

The response is plotted in Fig. 1.19. 
 

FIGURE 1.19 The response of the high-pass circuit to ramp input 

 
 

2. DIFFERENTIATORS 

Sometimes, a square wave may need to be converted into sharp positive and negative spikes 

(pulses of short duration). By eliminating the positive spikes, we can generate a train of 

negative spikes and vice-versa. The pulses so generated may be used to trigger a multivibrator. 

In such cases, a differentiator is used. If in a circuit, the output is a differential of the input 

signal, then the circuit is called a differentiator. 

A High-pass RC Circuit as a Differentiator 

If the time constant of the high-pass RC circuit, shown in Fig. 1.1(a), is much smaller than the 

time period of the input signal, then the circuit behaves as a differentiator. If T is to be large 

when compared to τ, then the frequency must be small. At low frequencies, XC is very large 

when compared to R. Therefore, the voltage drop across R is very small when compared to the 

drop across C. 

 

But iR = vo is small. Therefore, 
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FIGURE 1.20 The output of a differentiator 

Differentiating: 

 

Therefore, 
 

Thus, from Eq. (70), it can be seen that the output is proportional to the differential of the input 

signal, as shown in Fig. 1.20. If the input vi(t) = Vm  sin ωt: 

 

vo(t) ≈     where ω1 =  

We have from Eq. (3): 

    and   θ = tan−1(ω1/ω) 
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When θ = 90°, the sine function at the input becomes a cosine function at the output, as is 

required in a differentiator. When ω1/ω = 100, θ = 89.4° which is nearly equal to 90°. Hence, 

a high-pass circuit behaves as a good differentiator only when RC << T, and the output is a co- 

sinusiodally varying signal if the input is a sine wave. If the input is a square wave, the output 

is in the form of positive and negative spikes, as shown in Fig.1.20. 

 

FIGURE 1.21(a) The differentiator circuit when: negative spikes are eliminated in the output; 

and (b) positive spikes are eliminated in the output 

 

FIGURE 1.21(c) The output of a differentiator showing: positive spikes only; and (d) negative 

spikes only 

The output of the differentiator in Fig. 2.20 contains both positive and negative spikes. If only 

positive spikes are needed to trigger a multivibrator (to be considered later), we use the circuit 

shown in Fig. 1.21(a). Here, since D conducts only when the input spikes are positive, the 

negative spikes are eliminated. Alternately, if only negative spikes are needed, the positive 
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spikes are eliminated using the circuit in Fig. 1.21(b), since D conducts only when the input 

spikes are negative. The output of the circuit in Fig. 1.21(a) is shown in Fig. 1.21(c). Similarly, 

the output of the circuit in Fig. 1.21(b) is shown in Fig. 1.21(d). 

An Op-amp as a Differentiator 

An operational amplifier, commonly known as an op-amp, can be used as a differentiator, as 

shown inFig. 1.22(a). 

 

FIGURE 1.22(a) Op-amp as a differentiator 
 

FIGURE 1.22(b) The op-amp differentiator circuit resulting from the use of Miller’s theorem 

From Miller’s theorem: 

 

where A is the gain of the amplifier. The resistance, R, appears between the input and output 

terminals    of    the    op-amp.     Using     Miller’s     theorem,     R     can     be     replaced   

by R1 and R2 as R1 = R/(1− A) is small since Ais large; and R2 = RA/(A − 1) = R since A is large. 

Hence, the op-amp circuit can be redrawn as shown in Fig. 1.22(b). 

For a good differentiator, τ (= R1C) should be small. As R1 is a very small value of resistor 

(since A is large), an op-amp differentiator behaves as a better differentiator when compared to 

a simple RC differentiator, without physically reducing the value of R. 

Double Differentiators 

The circuit in Fig. 1.23 is called a double differentiator as we have two high-pass differentiating 

circuits. In the figure, A is the gain of the inverting amplifier. Here, R1C1 = τ1 and R2C2 = τ2 are 

small when compared to the time period of the input signal. 

Let the input to the circuit be a ramp, i.e., vi = αt. From Eq. (64), the output of the first high- 

pass R1C1circuit for the ramp input is: 

Therefore, the output voltage of the amplifier v is written as: 
 

where, A is the amplifier gain. It can be seen from Eq. (72) that v has phase inversion. The 

output of the first high-pass circuit, which is an exponential, is the input to the second 

differentiator. We know from Eq. (55) that the output of this second differentiator is a pulse. 
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FIGURE 1.23 A double differentiator 
 

where n = τ2/τ1  and x = t/τ1. So, 
 

Therefore, 
 

For n = 1 
 

The ramp voltage which is input to the double differentiator is converted to a pulse. The 

response is plotted in Fig. 1.24. From Eq. (1.75), the output for τ = τ1 = τ2 is given as: 

 

From Eq. (72) the output of the amplifier v is given as: 
 

v = −Aατ1  (1 − e−t/τ
1) 
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FIGURE 1.24 The response of a double differentiator to a ramp input 

The initial slope of this output is: 

 

From Eq. (71), we have: 

v1  = ατ (1 − e−t/τ) 

The initial slope of the output of the first differentiator (input to the amplifier) is: 
 

We see from Eqs. (77) and (78), the initial slope of the input to the amplifier v1 is α, whereas 

the initial slope of the amplifier output v is Aα. The output rises much faster than the input, as 

shown in Fig. 1.24. Hence, the amplifier is called a rate-of-rise amplifier. At this point, it is 

relevant to talk about a comparator. A circuit that compares the input with a reference and tells 

us the instant at which the input has reached the reference level is called a comparator. One 

such simple and practical comparator is a diode comparator. Sometimes a circuit needs to   be 
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activated the moment the input reaches a predetermined level. The diode comparator will not 

be able to do this job. Thus, the output of the diode comparator is given as the input to the 

double differentiator. As the output of the double differentiator is a pulse whose amplitude and 

duration can be controlled, this output can activate the desired circuit. We discuss this aspect 

in greater details in later chapters. 

 
2.1 THE RESPONSE OF A HIGH-PASS RL CIRCUIT TO STEP INPUT 

A high-pass RL circuit is represented in Fig. 2.2(b). If a step of magnitude V is applied, let us 

find the response. Writing the KVL equation: 

 

Therefore, from Eq. (80) 
 

As vi = V, Eq. (2.79) can also be written as: 
 

Applying Laplace transforms: 
 

Taking Laplace inverse: 
 

Similarly, the response of this circuit is evaluated for other inputs. This high-pass circuit is 

used as a differentiator if L/R T. Since vo  = Ldi/dt, and i ≈ vi/R: 

 

SOLVED PROBLEMS 

Example 8: The output of a step generator has an amplitude of 10 V and rise-time of 1.1 ns. 

When this is applied as an input to a high-pass circuit with R = 100 Ω [see Fig 1.25(a)], there 

appears across R a pulse of amplitude 1 V. Find the value of the capacitance. 
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FIGURE 1.25(a) The given coupling circuit 
 

FIGURE 1.25(b) The response of the circuit 

Solution: 

The response of the circuit in Fig. 1.25(a) is shown in Fig. 1.25(b). 

Rise time of step input tr = 2.2 τ1  = 1.1 ns 

Therefore, the time constant of the exponential input: 
 

The maximum value of the output is: 

 
 

vo(max) = vi n
1/(1−n) = 1V 

10n1/(1−n) = 1 or 

n = 0.14 

n =  = 0.14 

τ = nτ1  = 0.14 × 0.5 ns = 0.07 ns 

τ= RC = 0.07 × 10−9 s 

Therefore, 
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Example 9: A limited ramp from a generator rises linearly to Vs in a time period Ts = 0.1 μs and 

remains constant for 2 μs. This signal is applied to a differentiating circuit whose time constant 

is 0.01μs. The resultant pulse at the output of the differentiator has a maximum value of 15 V. 

What is the peak amplitude of the ramp at the output of the generator? 

Solution: 

 
 

RC = τ = 0.01 μs = 0.01 × 10−6 s 

vo(max) = 15 V 
 

ατ = vo(max) = 15 V 
 

Ts = 0.1 μs 

The peak value of the ramp from the generator is: 

 
 

Vs = αTs =  × 0.1 × 10−6  = 150 V 

The input and output are plotted in Fig. 2.26. 
 

FIGURE 1.26 The input and the output for the specified conditions 

 
 

 

 

3) LOWPASS CIRCUIT 

3.1 INTRUDUCTION 

A low-pass circuit is one which gives an appreciable output for low frequencies and zero or 

negligible output  for  high  frequencies.  In  this  chapter,  we  essentially  consider  low-  

pass RC and RL circuits and their responses to different types of inputs. Also, we study 
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attenuators that reduce the magnitude of the signal to the desired level. Attenuators which give 

an output that is independent of frequency are studied. One application of such a circuit is as a 

CRO probe. Further, the response of the RLC circuit to step input is considered and its output 

under various conditions such as under-damped, critically damped and over-damped conditions 

is presented. The application of an RLC circuit as a ringing circuit is also considered. 

3.2 LOW-PASS CIRCUITS 

Low-pass circuits derive their name from the fact that the output of these circuits is larger for 

lower frequencies and vice-versa. Figures 3.1(a) and (b) represent a low-pass RC circuit and a 

low-pass RL circuit, respectively. 

In the RC circuit, shown in Fig. 3.1(a), at low frequencies, the reactance of C is large and 

decreases with increasing frequency. Hence, the output is smaller for higher frequencies and 

vice-versa. Similarly, in the RL circuit shown in Fig. 3.1(b), the inductive reactance is small 

for low frequencies and hence, the output is large at low frequencies. As the frequency 

increases, the inductive reactance increases; hence, the output decreases. Therefore, these 

circuits are called low-pass circuits. Let us consider the response of these low-pass circuits to 

different types of inputs. 

 

FIGURE 3.1(a) A low-pass RC circuit; and (b) a low-pass RL circuit 

3.2.1 The Response of a Low-pass RC Circuit to Sinusoidal Input 

For the circuit given in Fig. 3.1(a), if a sinusoidal signal is applied as the input, the output vo is 

given by the relation: 
 

 

where, ω2  = 1/CR = 1/τ. From Eq. (3.1), the phase shift θ the signal undergoes is given as: 

θ = tan−1(ω/ω2) = tan−1(τ/T) 

Figure 3.2(a) shows a typical frequency vs. gain characteristic. Hence, f2 is the upper half- 

power frequency. At ω = ω2, 

 

Figure 3.2(b) shows the variation of gain with frequency for different values of τ. As is 

evident from the figure, the half-power frequency, f2, increases with the decreasing values of τ, 

the time constant. The sinusoidal signal undergoes a change only in the amplitude but its shape 

remains preserved. 
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Figure 3.2(c) shows the variation of θ as a function of frequency. As (τ/T) becomes      

large, θ approaches 90°. This characteristic can be appreciated when we talk about an integrator 

later. 

3.2.2 The Response of a Low-pass RC Circuit to Step Input 

Let a step voltage be applied as the input to the low-pass RC circuit shown in Fig. 3.1(a). The 

output vo can be obtained by using Eq. (2.9) as shown in Fig. 3.3. We have RC = τ. 

 

FIGURE 3.2(a) Typical frequency-vs-gain characteristic of a low-pass circuit to sinusoidal 

input 
 

 

FIGURE 3.2(b) Gain-vs-frequency curves for different values of τ 
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FIGURE 3.2(c) Phase-vs-frequency curves for different values of τ 

vo(t) = vf + (vi − vf) e
−t/τ 

Here, vf = V and vi = 0. Therefore, 
 

As t → ∞, vo(t) → V. 

Initially, as the capacitor behaves as a short circuit, the output voltage is zero. As the 

capacitor charges, the output reaches the steady-state value of V in a time interval that is 

dependent on the time constant, τ. On the other hand, the output of Eq. (3.2) can also be 

obtained by solving the following differential equation. From Fig. 3.1(a), For vi = V: 

 
 

FIGURE 3.3 The response of a low-pass circuit to step input 

We know that (1/C) ∫ idt = vo 

 

From Eqs. (3.3) and (3.4): 
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Taking Laplace transforms: 
 

Resolving into partial fractions: 
 

Putting s = 0: 
 

Putting s = −1/τ 
 

Therefore, 

 

 

Taking the Laplace inverse: 
 

Now, for the circuit in Fig. 3.1(b): 
 

Applying the Laplace transform: 
 

From Eq. (3.8), it may be seen that the output reaches the steady-state value faster for smaller 

values of τ. Similarly, when τ is large, it takes a longer time for the output to reach the steady- 

state value. 

Rise time: The time taken for the output to reach 90 per cent of its final value from 10 per 

cent of its final value is called the rise time. Using Eq. (3.8) to calculate the rise time for this 

circuit: 
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From Fig. 3.3 at t = t1, vo = 0.1 V. Therefore, 

Similarly at t = t2, vo  = 0.9 V: 
 

Using Eqs. (3.9) and (3.10), rise time is given as: 

Also f2 = 1/2πRC 

 

 

Therefore, 
 

Let a step voltage Vi be applied to a low-pass circuit. The output does not reach the steady- 

state value Vi instantaneously as desired. Rather, it takes a finite time delay for the output to 

reach Vi, depending on the value of the time constant of the low-pass circuit employed. If this 

output is to drive a transistor from the OFF to the ON state, this change of state does not occur 

immediately, because the output of the low-pass circuit takes some time to reach Vi. The 

transistor is thus said to be switched from the OFF state into the ON state only when the voltage 

at the output of the low-pass circuit is 90 per cent of Vi. If this time delay is to be small, τ should 

be small. On the contrary, if the output is to be ramp, τ should be large.  

 
 

3.2.3 The Response of a Low-pass RC Circuit to Pulse Input 

Let the input to the low-pass circuit be a positive pulse of duration tp and amplitude V as shown 

in Fig. 3.5(a). If this positive pulse is applied to drive an n–p–n transistor from the OFF state 

into the ON state, the transistor will be switched ON only after a time delay. Similarly, at the 

end of the pulse, the transistor will not be switched immediately into the OFF state, but will 

take a finite time delay. To know how quickly it is possible to switch a transistor from one state 

to the other, we have to consider the response of a low-pass circuit to the pulse input. During 

the period 0 to tp, the input is a step and the output is given by Eq. (3.8). At t = tp the input falls 

and the output decays exponentially as given in Eq. (3.13). 
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FIGURE 3.5 Response of a low-pass circuit for the pulse input for varying τ 
 

For vi = V, the output for different values of τ is plotted in Fig. 3.5. It is seen here that the 

shape of the pulse at the output is preserved if the time constant of the circuit is much smaller 

than tp, i.e., τ tp. However, if a ramp is to be generated during the period of the pulse, τ is 

chosen such that τ     tp. The method to compute the output is illustrated in Example 3.2. 

EXAMPLE 

Example 3.2: An ideal pulse of amplitude 10 V is fed to an RC low-pass integrator circuit. The 

width of the pulse is 3 μs. Draw the output waveforms for the following upper 3-dB 

frequencies: (a) 30 MHz, (b) 3 MHz and (c) 0.3 MHz. 

Solution: Consider the low-pass circuit in Fig. 3.1(a). 

1. At f2  = 30 MHz 

We know that f2  = 1/2Πrc 

 

tr = 2.2τ = 2.2 × 5.3 × 10−9  = 11.67 ns 

At t = tp, 
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Vp  = V(1 − e−t
p
/τ) = 10(1 − e−3×10−6/5.3×10−9) = 10 V 

The output is plotted in Fig. 3.6(a). 
 

FIGURE 3.6(a) Output waveform at f2  = 30 MHz 

2. At f2  = 3 MHz 
 

tr = 2.2τ = 2.2 × 53 × 10−9  = 116.6 ns 

At t = tp, 

 
 

Vp  = V(1 − e−t
p
/τ) = 10(1 − e−3×10−6/53×10−9) = 10 V 

The output is plotted in Fig. 3.6(b). 
 

FIGURE 3.6(b) Output waveform at f2  = 3 MHz 

3. At f2  = 0.3 MHz 

tr = 2.2τ = 2.2 × 530 × 10−9  = 1.166 μs 

At t = tp, 

 

p = V(1 − e−t
p

/τ) 

Therefore, 

 
Vp  = 10(1 − e−3×10−6/530×10−9) = 9.96 V 

The output is plotted in Fig. 3.6(c). 
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FIGURE 3.6(c) The output waveform at f2= 0.3 MHz 

 
 

3.2.4 The Response of a Low-pass RC Circuit to a Square-wave Input 

Let the input to the low-pass circuit be a square wave as shown in Fig. 3.7 (a). 

We have from Eq. (2.9): 
 
 

vo1(t) = vf + (vi − vf)e
−t/τ 

From Fig. 3.7(c), at t = T1, vo1  = V2  and vi = V1  and vf = V′. Therefore: 
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FIGURE 3.7 The response of the low-pass circuit to a square-wave input for different values 

of τ 

Again, at t = T2, Vo2  = V1 and we have vi = V2, Vf = V″ 

 

If the input is a symmetric square wave: 
 

Also 
 

Using Eqs. (3.14) and (3.17): 
 

 

 

 
 

Using Eqs. (3.17) and (3.19), it is possible to calculate V2 and V1 and plot the output 
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waveforms as given in Figs. 3.7(c) and (d), respectively. 

If τ  T, then the wave shape is maintained. And if τ  T, the wave shape is highly distorted, 

but the output of the low-pass circuit is now a triangular wave. So it is possible to derive a 

triangular wave from a square wave by choosing τ to be very large when compared to T/2 of 

the symmetric square wave.  

 
3.2.9 Low-pass RL Circuits 

Consider the low-pass RL circuit in Fig. 3.1(b). For this low-pass circuit, vo = R/L ∫ vi dt. This 

circuit can also be used as an integrator when the time constant L/R  T. The major limitations 

of high-pass and low-pass RL circuits are: 

1. For a large value of inductance, an iron-cored inductor has to be used. As such it is 

bulky and occupies more space. 

2. Inductors are more lossy elements, when compared to capacitors. So, it is possible 

to get ideal capacitors, but not ideal inductors. 

 

ATTENUATORS 

An attenuator is a circuit that reduces the amplitude of the signal by a finite amount. A simple 

resistance attenuator is represented in Fig. 3.16. The output of the attenuator shown in Fig. 

3.16 is given by the relation: 
 

From this equation, it is evident that the output is smaller than the input, which is the main 

purpose of an attenuator—to reduce the amplitude of the signal. Attenuators are used when 

the signal amplitude is very large. Let us measure a voltage, say, 5000 V, using a CRO; such 

a large voltage may not be handled by the amplifier in a CRO. Therefore, to be able to 

measure so that the voltage that is actually connected to the CRO is only 500 V. The output 

of the attenuator is thus reduced depending on the choice of R1  and R2. 

 

FIGURE 3.16 A resistance attenuator 
 

FIGURE 3.17(a) The attenuator output connected to amplifier input 

Uncompensated Attenuators 

If the output of an attenuator is connected as input  to  an  amplifier  with  a  stray  

capacitance C2 and input resistance Ri, as shown in Fig. 3.17(a). 
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Consider the parallel combination of R2 and Ri. If the amplifier input is not to load the 

attenuator output, then Ri should always be significantly greater than R2. The attenuator circuit 

is now shown in Fig. 3.17(b). 

Reducing the two-loop network into a single-loop network by Thevenizing: 
 

And  Rth = R1||R2 

Hence, the circuit in Fig. 3.17(b) reduces to that shown in Fig. 3.17(c). 

When the input αvi is applied to this low-pass RC circuit, the output will not reach the steady- 

state value instantaneously. If, for the above circuit, R1 = R2 = 1 MΩ and C2 = 20 nF, the rise 

time is: 

tr = 2.2 RthC2  = 2.2 × 0.5 × 106  × 20 × 10−9 

tr = 22ms 

This means that after a time interval of approximately 22ms after the application of the 

input αvi to the circuit, the output reaches the steady-state value. This is an abnormally long 

delay. An attenuator of this type is called an uncompensated attenuator, i.e., its output is 

dependent on frequency. 

 

FIGURE 3.17(b) The attenuator, considering the stray capacitance at the amplifier input 
 

FIGURE 3.17(c) An uncompensated attenuator 

 
 

Compensated Attenuators 

To make the response of the attenuator independent of frequency, the capacitor C1 is connected 

acrossR1. This attenuator now is called a compensated attenuator shown in Fig. 3.18(a). This 

circuit in Fig. 3.18(a) is redrawn as shown in Fig. 3.18(b). 
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FIGURE 3.18(a) A compensated attenuator 

 

FIGURE 3.18(b) Redrawn circuit of Fig 3.18(a) 
 

FIGURE 3.18(c) The compensated attenuator open-circuiting the xy branch 

In Figs. 3.18(a) and (b), R1, R2, C1, C2 form the four arms of the bridge. The bridge is said 

to be balanced when R1C1 = R2C2, in which case no current flows in the branch xy. Hence, for 

the purpose of computing the output, the branch xy is omitted. The resultant circuit is shown 

in Fig. 3.18(c). 

When a step voltage with vi = V is applied as an input, the output is calculated as follows: 

At t = 0+, the capacitors do not allow any sudden changes in the voltage; as the input changes, 

the output should also change abruptly, depending on the values of C1  and C2. 

 

Thus, the initial output voltage is determined by C1 and C2. As t → ∞, the capacitors are 

fully charged and they behave as open circuits for dc. Hence, the resultant output is: 
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Perfect compensation is obtained if, vo(0
+) = vo(∞) 

From this using Eqs. 3.43 and 3.44 we get: 

 

and the output is αvi. 
 

 

FIGURE 3.19(a) A perfectly compensated attenuator (C1  = C2) 
 

FIGURE 3.19(b) An over-compensated attenuator (C1 > C2) 

Let us consider the following circuit conditions: 

1. When C1  = Cp, the attenuator is a perfectly compensated attenuator. 

2. When C1  > Cp, it is an over-compensated attenuator. 

3. When C1  < Cp, it is an under-compensated attenuator. 

The response of the attenuator to a step input under these three conditions is shown in Figs. 

3.19(a),(b) and (c), respectively. 
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In the attenuator circuit, as at t = 0+, the capacitors C1 and C2 behave as short circuits, the 

current must be infinity. But impulse response is impossible as the generator, in practice, has a 

finite source resistance, not ideally zero. Now consider the compensated attenuator with source 

resistance Rs [see Fig. 3.19(d)]. 

If the xy loop is open for a balanced bridge, Thevenizing the circuit, the Thevenin voltage 

source and its internal resistance  and R′ are calculated using Fig. 3.19(e). 

 

FIGURE 3.19(c) An under-compensated attenuator (C1  < C2) 

FIGURE 3.19(d) The attenuator taking the source resistance into account 
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FIGURE 3.19(e) The circuit used to calculate the Thevenin voltage source and its internal 

resistance 

 

FIGURE 3.19(f) Redrawn circuit of Fig. 3.19(e) 

The value of Thevenin voltage source is: 

 

and its internal resistance is: 
 

The above circuit now reduces to that shown in Fig. 3.19(f). Usually Rs (R1  + R2), 

hence, Rs || (R1 + R2) ≈ Rs. Thus the circuit in Fig. 3.19(f) reduces to that shown in Fig. 3.19(g). 

This is a low-pass circuit with time constant τs = RsCs, where Cs is the series combination of 

C1 and C2; Cs= C1C2/(C1 + C2). The output of the attenuator is an exponential with time 

constant τs; and if τs  is small, the output almost follows the input. Alternately, consider the 
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situation when a step voltage V from a source having Rs as its internal resistance, is connected 

to a circuit which has C2 between its output terminals, [see Fig. 3.19(h)]. 

This being a low-pass circuit (can also be termed as an uncompensated attenuator), with time 

constant τ(= RsC2), its output will be an exponential with rise time tr, where 

Now consider the compensated attenuator, shown in Fig. 3.19(g), where the internal 

resistance of the source Rs is taken into account. The time constant of this circuit is τs(= RsCs) 

and the rise time  is: 

 
 = 2.2 RsCs where Cs = C1C2/(C1  + C2) 

 

FIGURE 3.19(g) The final reduced circuit of a compensated attenuator 
 

FIGURE 3.19(h) A low-pass circuit (uncompensated attenuator) 
 

From Eqs. (3.47) and (3.48): 
 

 

 = [C1/(C1  + C2)] = α 

where α is the attenuation constant, which tells us by what amount the signal is reduced at 

the output. 

 

If α = 0.5: 
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From Eq. (3.50), it seen that the output signal from a compensated attenuator has a negligible 

rise time when compared to the output signal from an un-compensated attenuator. It means that 

the step voltage, V is more faithfully reproduced at the output of a compensated attenuator, 

which is its main advantage. 

A perfectly compensated attenuator is sometimes used to reduce the signal amplitude when 

the signal is connected to a CRO to display a waveform. A typical CRO probe may be 

represented as in Fig. 3.20.Example 3.7 helps to further elucidate and elaborate the functioning 

of the attenuator circuit. 

 

FIGURE 3.20 A typical CRO probe 

EXAMPLE 

Example 3.7: Calculate the output voltages and draw the waveforms when (a) C1  = 75 pF, 

(b) C1 = 100 pF, (c) C1 = 50 pF for the circuit shown in Fig. 3.21(a). The input step voltage is 

50 V. 

 

FIGURE 3.21(a) The given attenuator circuit 

Solution: For perfect compensation, R1C1 = R2C2. Here R1 = R2. 
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1. When C1 = 75 pF, then the attenuator is perfectly compensated. The rise time of the 

output waveform is zero. 

Attenuation,  

vo(0+) = vo(∞) = αvi = 0.5 × 50 = 25 V 

2. When C1 = 100 pF, then the attenuator is over-compensated, hence vo(0
+) > vo(∞). 

The output at t = 0+, 

 

The output at t = ∞, 
 

From Fig. 3.21(b): 

 and C = C1  + C2 
 

FIGURE 3.21(b) The equivalent circuit to get the time constant for the decay of the 

overshoot 

Time constant τ1 with which the overshoot at t = 0+ decays to the steady-state value 

is: 

 

Fall time tf = 2.2 τ1  = 2.2 × 87.5 × 10−6  = 192.5 μs 

3. When C1  = 50 pF, then the attenuator is under-compensated. 

 

 

FIGURE 3.21(c) The input and output responses 

The output at t = 0+: 
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The output at t = ∞: 
 

The time constant, τ2, with which the output rises to the steady-state value is: 

 

Rise time, tr = 2.2 τ2 

 
 

tr = 2.2 × 62.5 × 10−6  = 137.5 μs 

 

RLC CIRCUITS 
 

 

RLC circuits behave altogether differently when compared to either RL or RC circuits. RLC 

circuits are resonant circuits. These can be either series resonant circuits or parallel 

resonant circuits. A parallel RLC circuit is used as a tank circuit in an oscillator to generate 

oscillations (this is the feedback network that produces the phase shift of 180°). The RLC 

circuit is also used in tuned amplifiers to select a desired frequency band at the output. 

When a sinusoidal signal is applied as input to a series RLC circuit [see Fig. 3.23(a)], the 

frequency-vs-current characteristic is as shown in Fig. 3.23(b). 

At resonance: XL = XC 
 

 

FIGURE 3.23(a) An RLC series circuit with sinusoidal input; (b) the frequency-vs-current 

characteristic 
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FIGURE 3.23(c) A parallel RLC resonant circuit with sinusoidal input; (d) the frequency-

vs- voltage characteristic 
 

At resonance, the impedance is minimum, purely resistive and equal to R. The current at the 

resonant frequency, fo is maximum, termed imax. Let us now consider a parallel resonant circuit 

[see Fig. 3.23(c)] and its frequency-vs-vo characteristic, shown in Fig. 3.23(d). In the parallel 

resonant circuit, the impedance is maximum at resonance and hence, the voltage is maximum 

at fo. The figure of merit of a tuned circuit, denoted by Q, is given as: 

 

The larger the value of Q, the sharper the response characteristic of the tuned circuit. 

 
 

The Response of the RLC Parallel Circuit to a Step Input 

Consider the RLC circuit shown in Fig. 3.24(a). Applying Laplace transforms, the above circuit 

is redrawn shown in Fig. 3.24(b). The impedance of the parallel combination of Ls and 1/Cs is: 

 
 

FIGURE 3.24(a) RLC parallel circuit 
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FIGURE 3.24(b) The Laplace circuit of Fig. 3.24(a) 

Multiplying the numerator and denominator by Cs we get: 
 

 

 

Therefore, 
 

The characteristic equation is: 
 

The roots of this characteristic equation are: 
 

Let K, the damping constant, be given by: 
 

From Eq. (3.51), the resonant frequency of the tank circuit is: 
 

From Eqs. (3.56) and (3.57): 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

https://www.safaribooksonline.com/library/view/pulse-and-digital/9788131721353/xhtml/sec3-4.xhtml#ch3fig24a
https://www.safaribooksonline.com/library/view/pulse-and-digital/9788131721353/xhtml/sec3-4.xhtml#ch3eq51
https://www.safaribooksonline.com/library/view/pulse-and-digital/9788131721353/xhtml/sec3-4.xhtml#ch3eq56
https://www.safaribooksonline.com/library/view/pulse-and-digital/9788131721353/xhtml/sec3-4.xhtml#ch3eq57


 

 

Therefore, 
 

Putting Eq. (3.58) in Eq. 

(3.55): Therefore, 

 
 

 

From Eq. (3.56) we have: 
 

Therefore, 
 

From Eq. (3.53): 
 

For unit step voltage as input: 
 

Applying partial fractions: 
 

Putting s = s1 
 

Putting s = s2 
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Applying inverse Laplace transform to both sides, we get: 
 

From Eq. (3.59): 

(i) If K = 0: 
 

 
 

Using Eq. (3.60): 
 

Let 
 

Therefore, 
 

If we substitute the value of To  from Eq. (3.57) in Eq. (3.65): 
 

Thus, K → 0, as R → ∞. Here, K can not be zero as assumed ideally, since R = ∞ means 

open-circuiting the resistance R in the circuit shown in Fig. 3.24(a), which is absurd because 

the excitation is not connected to the circuit when R = ∞. However, R can be made very large, 

in which case K becomes very small, though not zero as expected. The output has a smaller 

amplitude but is oscillatory in nature, as seen from Eq. (3.66). Thus, when a step is applied as 

input to the RLC circuit in Fig. 3.24(a), with K = 0 (practically very small), the response is un- 

damped oscillations, as shown in Fig. 3.24(c). 
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FIGURE 3.24(c) The response to K = 0 

(ii) If K < 1, it is a case of under-damping as shown in Fig. 3.24(d). For this condition, from Eq. 

(3.59): 

 

Therefore, 
 

Multiply and divide Eq. (3.67) by K and substitute K/To = 1/4πRC in it. The resultant 

equation is: 

 

From Eq. (3.60): 
 

where 
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The output response is an under-damped sinusoidal waveform. The oscillations die down 

after a few cycles, as shown in Fig. 3.24(d). 

 

FIGURE 3.24(d) The response to K < 1 

(iii) If K = 1, it is a case of critical damping. If we substitute the K value in the Eq. (3.59), then 

the roots are s1 = s2 = −2π/To. The roots are equal and real. 

If the input is a step voltage: 
 

Here, 
 

Therefore, 
 

Applying inverse Laplace transform on both sides: 
 

where x = t/To: 
 

Here: 
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The output response is shown in Fig. 3.24(e). 
 

FIGURE 3.24(e) The response to K = 1 

(iv) If K > 1, it is a case of over-damping. If K > 1, then the roots, from Eq. (3.59), are: 

 
The Response of the RLC Series Circuit to a Step Input 

Consider a series RLC circuit, shown in Fig. 3.25(a). Applying Laplace transforms, the circuit 

in Fig. 3.25(a) can be redrawn as shown in Fig. 3.25(b). The total impedance Z(s) in this circuit 

is given by the relation: 

 
 

FIGURE 3.25(a) An RLC series circuit 
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FIGURE 3.25(b) The Laplace circuit of Fig. 3.25(a) 

Therefore, 

 
 

But 
 

Substituting Eq. (3.77) in Eq. (3.76): 
 

For a step input V, from Eq. 3.75 
 

The characteristic equation is: 
 

The roots of this characteristic equation are: 
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1. If either (R/2L)2 > 1/LC or R > , then both the roots are real and different, the 

circuit is over-damped. 

2. If either (R/2L)2  = 1/LC or R = , then both the roots are real and equal, the 

circuit is critically damped. 

3. If either (R/2L)2 < 1/LC or R < , then both the roots are complex conjugate to 

each other; the circuit is under-damped.  
 

 
 


